ست
 هر

(الف)عادكردن
ا-مفهومعادكردن
 اين اعداد صحيح، شمارش كردهايم.
عدد

 حساب مى آيند.
تعريف بخش بذذ يرى (عادكردن)، عدد صحيح مخالف صفر a را شمارندأ عدد صحيح b مىناميه، هركاه عددى صحيح مانند q يافت شود به طورى كه b
 $a \mid b \Leftrightarrow b=a q \quad a \nmid b \Leftrightarrow b \neq a q$
$-v\left|q^{r} \Leftrightarrow g r=(-v)(-q) \quad \circ\right| \circ \Leftrightarrow \circ=\circ \times q$

YF FY FA Cr G० (Y IKO ()

$$
\begin{aligned}
& \text { ت تزينهٔ هr } \\
& \text { از درون اين عدد استخراج مىشود بيابيم: } \\
& \text { بالأخره تجزيه شد }
\end{aligned}
$$

$$
Y(F \quad 10(r \quad r \circ(r) \quad \text { \& (}
$$

$F 0.00=X^{r} \times r^{r} \times \Delta^{r} \Rightarrow$ كزينd \Rightarrow

 "F|ت

تعداد شمارندهُطبيعى تعداد شمارندهُ طبيعى

$$
=9 \times r \times r \quad=r \times r \times r
$$ اين عدد بايد Y برابر شود؛ چون تست، شمارندههاى صحيح را خواسته است. r-r-خواصعادكردن

1) $\mathrm{a}|\mathrm{b} \Rightarrow \mathrm{a}| \mathrm{mb} \quad \mathrm{m} \in \mathbb{Z}$
[$\mathrm{a}|\mathrm{b} \Rightarrow \mathrm{a}| \mathrm{b}^{\mathrm{n}}$
I $1 \mathrm{ab}|c \Rightarrow \mathrm{c}| \mathrm{c} \wedge \mathrm{b} \mid \mathrm{c}$
[1] $\mathrm{a}|\mathrm{b} \Rightarrow \mathrm{ma}| \mathrm{mb} \quad(\mathrm{m} \in \mathbb{Z})$
$\Delta \mathrm{ma}|\mathrm{mb} \Rightarrow \mathrm{a}| \mathrm{b} \quad(\mathrm{m} \neq \circ)$
티 $\mathrm{a}|\mathrm{b} \wedge \mathrm{b}| \mathrm{c} \Rightarrow \mathrm{a} \mid \mathrm{c}$
$\mathbb{Y}|\mathrm{b} \wedge \mathrm{a}| \mathrm{c} \Rightarrow \mathrm{a} \mid \mathrm{b} \pm \mathrm{c}$
$\Delta \mathrm{a}|\mathrm{b} \wedge \mathrm{a}| \mathrm{c} \Rightarrow \mathrm{a} \mid \mathrm{mb} \pm \mathrm{nc}(\mathrm{m}, \mathrm{n} \in \mathbb{Z})$
$19\left\{\left.\begin{array}{l}\mathrm{a} \mid \mathrm{b} \\ \mathrm{c} \mid \mathrm{d}\end{array} \Rightarrow \mathrm{ac} \right\rvert\, \mathrm{bd}\right.$
[10 $a\left|b \Leftrightarrow a^{n}\right| b^{n}$

$$
\begin{aligned}
& \mathrm{n}(\mathrm{~A}-\mathrm{B})=\mathrm{n}(\mathrm{~A})-\mathrm{n}(\mathrm{~A} \cap \mathrm{~B})
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{cc}
\downarrow & 9 \circ \circ \underset{\sim}{\downarrow} \begin{array}{c}
\downarrow \\
r^{\Delta} \times r \times \Delta^{r} \\
\downarrow
\end{array} \\
& r^{r} \times r \times \Delta^{r} \\
& \downarrow
\end{array}
\end{aligned}
$$

III $\left\{\begin{array}{l}a \mid b \\ b \neq 0\end{array} \Rightarrow|a| \leq|b|\right.$
III $\left\{\begin{array}{l}a \mid b \\ b \mid a\end{array} \Rightarrow a= \pm b\right.$
III. $\mathrm{a}|\mathrm{bc} \xrightarrow{\text { غ }} \mathrm{b}| \mathrm{b} \mathrm{L} \mathrm{a} \mid \mathrm{c}$

III $\mathrm{a}|\mathrm{b}+\mathrm{c} \xrightarrow{\text { ble }} \mathrm{a}| \mathrm{b}$ ي $\mathrm{a} \mid \mathrm{c}$
B $1 \cdot \mid v+r$ r $10|/ v, 10| r$
[1.2 $\mathrm{a}^{\mathrm{m}}\left|\mathrm{b}^{\mathrm{n}} \xrightarrow{\frac{\mathrm{m}}{\mathrm{n}} \geq \frac{p}{q}} \mathrm{a}^{\mathrm{p}}\right| \mathrm{b}^{\mathrm{q}}$
B $a^{\dagger}\left|b^{q} \xrightarrow{\frac{f}{q} \times \frac{q}{v}} a^{q}\right| b^{v}$
B $a^{v}\left|b^{1 r} \xrightarrow{\frac{v}{r}>\frac{\Delta}{10}} a^{\Delta}\right| b^{1 \cdot}$

$\left.\left\{\begin{array}{l}a\left|n^{r}+r \xrightarrow{x \Delta} a\right| \Delta n^{r}+1 \Delta \\ a|\Delta n-1 \xrightarrow{x n} a| \Delta n^{r}-n\end{array}\right] a \right\rvert\, n+1 \Delta$
$\left\{\begin{array}{l}\mathrm{a}|\mathrm{n}+1 \Delta \xrightarrow{x \Delta} \mathrm{a}| \Delta \mathrm{n}+\mathrm{v} \Delta \longrightarrow \mathrm{a} \mid \mathrm{v} \varphi \\ \mathrm{a} \mid \Delta \mathrm{n}-1\end{array}\right.$
$\Rightarrow\left(V \varepsilon=r^{r} \times 19\right)$ تعداد شمارندهماى طبيعى عدد $=r \times r=9$

$$
\begin{array}{lll}
r(4 & r(r & 1(r
\end{array}
$$

 ,راهماى متنوعى دارد.

$$
\text { كمكى :ra-1|ra-1 } \xrightarrow{x v} r a-1|r| a-v
$$

راهحلسوم
$\mathrm{ma}+\mathrm{n}\left|\mathrm{m}^{\prime} \mathrm{a}+\mathrm{n}^{\prime} \Rightarrow \mathrm{ma}+\mathrm{nb}\right|\left|\begin{array}{cc}\mathrm{m} & \mathrm{n} \\ \mathrm{m}^{\prime} & \mathrm{n}^{\prime}\end{array}\right|$
$r a-1|v a+r \Rightarrow r a-1|\left|\begin{array}{cc}r & -1 \\ v & r\end{array}\right| \Rightarrow r a-1 / 19 \Rightarrow r a-1= \pm 1, \pm 19$
ه روش ديكرى به نام روش ريشه وجود دارد كه در حل تستهاى آخر بخش بيان شده است.

$a^{1 r} \mid b^{\gamma}(q$
$a^{11} \mid b^{8}(r$
$a^{\wedge} \mid b^{\Delta}(r$
$a^{v} \mid b^{*}(1$

تكزينهُ n|
(1) $a^{\Delta}\left|b^{r} \xrightarrow{\frac{\Delta}{r} \ngtr \frac{\gamma}{\psi}} a^{\nu}\right| b^{\psi} x$
(1) $a^{\Delta}\left|b^{r} \xrightarrow{\frac{\Delta}{r}>\frac{\Lambda}{\Delta}} a^{\wedge}\right| b^{\Delta}$
? أكر

$\left.\begin{array}{l}r \Delta\left|n^{r} \Rightarrow r^{r} \times \Delta\right| n^{r} \Rightarrow \mathrm{n}=r \times \Delta \times \mathrm{q} \Rightarrow \mathrm{n}=1 \Delta \mathrm{q} \\ r \wedge\left|\mathrm{n}^{r} \Rightarrow r^{r} \times r\right| \mathrm{n}^{r} \Rightarrow \mathrm{n}=r^{r} \times r \times \mathrm{q}^{\prime} \Rightarrow \mathrm{n}=1 \mathrm{rq}^{\prime}\end{array}\right\} \Rightarrow \mathrm{n}_{\min }^{{ }^{r}=r_{0}}$
文 $\frac{\mathbf{y}}{\mathbf{x}}=\frac{\mathbf{x}}{\mathbf{x}+1}$ نقند نقطه با مختصات صحيح عبور مىكند؟
F (f
$r(r$
r(r
1(1)
$\left.y=\frac{x^{r}}{x+1} \in \mathbb{Z} \Rightarrow x+1 \right\rvert\, x^{r}$
تزينهٔ ه||
$\left\{\begin{array}{l}x+1 \mid x^{r} \\ x+1|x+1 \xrightarrow{x} x+1| x^{r}+x\end{array} \xrightarrow{x+1 \mid x}\right.$
$\left\{\left.\begin{array}{l}x+1 \mid x \\ x+1 \mid x+1\end{array} \longrightarrow x+1 \right\rvert\, 1 \Rightarrow x+1= \pm 1 \Rightarrow x=\circ-r\right.$
عدد X= x در دامنئ تعريف تابع نيست؛ چپ فقط يكى نقطه وجود دارد. ץ-كاربرداتحادهادربخشخذيرى

1) $\mathrm{a}^{\mathrm{n}}-\mathrm{b}^{\mathrm{m}} \left\lvert\, \mathrm{a}^{\mathrm{n}^{\prime}}-\mathrm{b}^{\mathrm{m}^{\prime}} \Leftrightarrow \frac{\mathrm{n}^{\prime}}{\mathrm{n}}=\frac{\mathrm{m}^{\prime}}{\mathrm{m}}=\mathrm{k} \in \mathbb{Z}\right.$

II $\mathrm{a}^{\mathrm{n}}+\mathrm{b}^{\mathrm{m}} \left\lvert\, \mathrm{a}^{\mathrm{n}^{\prime}}+\mathrm{b}^{\mathrm{m}^{\prime}} \Leftrightarrow \frac{\mathrm{n}^{\prime}}{\mathrm{n}}=\frac{\mathrm{m}^{\prime}}{\mathrm{m}}=r \mathrm{k}+1\right.$
$\theta \Delta^{r}+\Lambda^{r} \left\lvert\, \Delta^{r}+\Lambda^{q} \Leftrightarrow \frac{\mathbb{r}}{F}=\frac{q}{r}=r\left(\Delta, \theta^{(}\right)\right.$
17] $a^{n}+b^{m} \left\lvert\, a^{n^{\prime}}-b^{m^{\prime}} \Leftrightarrow \frac{n^{\prime}}{n}=\frac{m^{\prime}}{m}=r k\right.$
B $r^{r}+r^{r} \left\lvert\, r^{\varphi}-r^{\top} \Leftrightarrow \frac{\varepsilon}{r}=\frac{r}{r}=r(r g)\right.$
[17 $\mathrm{a}^{\mathrm{n}}-\mathrm{b}^{\mathrm{m}} \mid \mathrm{a}^{\mathrm{n}^{\prime}}+\mathrm{b}^{\mathrm{m}^{\prime}}$.

$$
\text { 1.rr|rror } r^{\wedge_{0}}-1\left(F \quad r \mid r^{\wedge_{0}}+1\left(r \quad 1 r_{0} \mid r^{r_{0}}-r^{F_{0}}(r\right.\right.
$$

[] كدام نادرست است؟
(1) $r^{r}+\Delta^{r} \left\lvert\, r^{q_{0}}+\Delta^{q_{0}} \Leftrightarrow \frac{q_{0}}{r}=r_{0}\left(0, \theta_{0}\right)\right.$
(1) $r^{r}+r^{\dagger} \left\lvert\, v^{r_{0}}-r^{\mu_{0}} \Leftrightarrow \frac{r_{0}}{r}=\frac{r_{0}}{f^{\prime}}=1 \circ\right.$ (rgز)
(7) $r^{\Delta}+1 \left\lvert\, r^{\Lambda_{0}}+1 \Leftrightarrow \frac{\Lambda_{0}}{\Delta}=19(ج$ (جز) $) \Rightarrow\right.$ د
(3) $r^{\prime \circ}-1 \left\lvert\, r^{\Lambda_{0}}-1 \Leftrightarrow \frac{\Lambda_{0}}{10}=\Lambda(\tau)\right.$

$$
\begin{gather*}
f \& \wedge(r \Rightarrow r q(r) \\
r \Delta\left|r^{n}+r^{n} \Rightarrow r^{r}+r^{r}\right| r^{n}+r^{n} \Rightarrow \frac{n}{r}=r k+1 \Rightarrow n=9 k+r \\
100 \leq 9 k+r<100 \Rightarrow 9 v \leq 9 k<99 \gamma \Rightarrow 19 / 1 \leq k<199 / 1
\end{gather*}
$$

ت كزينه́ nra

$$
\Rightarrow \mathrm{k}=1 \mathrm{~V}, \ldots, 199 \Rightarrow \text { تعداد }=10 \circ
$$

ترسشهاى يجهاركزينهاى
آ اfFV

$$
\begin{aligned}
& r \mid b^{r}(r \\
& a^{\dagger} \mid b^{r} c^{r}\left({ }^{r}\right. \\
& r \mid a^{r}\left({ }^{r}\right. \\
& r \mid 1 \cdot a-\lambda b(r \quad r \mid \Delta a+r b()
\end{aligned}
$$

$$
\begin{aligned}
& a^{r} \mid c^{r}\left(r \quad a \mid c^{r}\left(r \quad a^{r} \mid b c^{r}()\right.\right. \\
& \text { 1\&q-أكر اعداد a } \\
& \text { كوحكترين عدد طبيعى זرقمى k }
\end{aligned}
$$

ها ا- مجموع ارقام كوحكترين عدى طبيعى n كه مربع آن مضرب FF و مكعب آن مضرب FD باشد، كدام است؟ Q (F 1 人 V (Y \quad () | ال| ال منحنى $y=\frac{r x^{r}-r x+r}{r x+1}$ از حند نقطه با مختصات طبيعى عبور مىאند؟ F (Y Y Y I Y

9 (f
$11(\gamma$
$\Lambda(Y$
IV()
 و $B=\left\{n: 1 \uparrow \& \mid \Delta^{n}-1\right\}$ صدق مىیند، كدام است؟
$\Delta(F$
F (r
$r(Y$
$r(1$

IDF Y०0 (F 100 (r) 100 (Y (1) (1 $\Delta \Delta$
9 (f)
$\lambda(r$
1 (Y
(1) صفر

تعريف ب.م.م با عادكردن، دو عدد صحيح a و b مفروض اند (لااقل يكى مخالف صفر است). عدد

IF $\forall \mathrm{m}>\circ: \mathrm{m}|\mathrm{a}, \mathrm{m}| \mathrm{b} \Rightarrow \mathrm{m} \leq \mathrm{d}$
$8(I r, \mid \hat{\wedge})=9 \Rightarrow\left\{\begin{array}{l}1) \varepsilon| | r, q| | \mathrm{A} \\ r) \forall \mathrm{m}>0: \mathrm{m}| | r, \mathrm{~m}| | \wedge \Rightarrow \mathrm{m} \leq q\end{array}\right.$

 $1 \mathrm{a}|\mathrm{c}, \mathrm{b}| \mathrm{c} \quad$ هركّاه
[$\forall \mathrm{m}>\circ: \mathrm{a}|\mathrm{m}, \mathrm{b}| \mathrm{m} \Rightarrow \mathrm{c} \leq \mathrm{m}$
$8[|r,| \lambda]=r g \Rightarrow\left\{\begin{array}{l}1)|r| r g,|\lambda| r g \\ r) \forall \mathrm{m}>0:|r| \mathrm{m},|\lambda| m \Rightarrow r g \leq m\end{array}\right.$
$(0, a)=|a| \quad(\circ,-10)=10$
ج
(\circ (,\circ) =
تعريف نشده
[7 به ازاى چند عدد طبيعى هم

$$
G(F \quad \Delta(r \quad \text { F } \quad \Delta \quad r()
$$

$$
(a b, r \Delta)=r \Delta(\digamma \quad[a b, 1 \circ \Delta]=1 \circ \Delta(r \quad(a, \Delta)=\Delta(r \quad(b, v)=v()
$$

 يك باشد، تعداد اعداد دورقمى n كدام است؟

$$
\begin{array}{llll}
Y(r & r & r(r & 1
\end{array}
$$

مقدار مىتواند باشد؟

	$r(r$	1 (Y	()
19Y- به ازاى چند عده a متعلق به مجموعهٔ			
18 (f)	IV \sim_{0}	YY (Y	rre

$$
\begin{aligned}
& {[11, k]=11\left(\mathrm{~F} \quad \mathrm{k} \left\lvert\, 11\left(\begin{array}{rl}
\\
(11, k)=1(\mathrm{r} & (11, \mathrm{k})=11(1)
\end{array}\right.\right.\right.}
\end{aligned}
$$

$$
\begin{aligned}
& \text { YY (F 90 (r 19人 (Y Ir () }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
d \mid 9 n+r \\
d \mid l \ln -\Delta
\end{array} \Rightarrow d\left|\left|\begin{array}{cc}
q & r \\
11 & -\Delta
\end{array}\right| \Rightarrow d\right|-9 V \quad \text { البته میتوانستيهم بنويسيم: } \\
& \text { خلاصه آن كه V } 9 \text { يا } \mathrm{C} \text { لI است. از آن جايى كه صورت تست اشاره كرده، دو عدد نسبت به هم } \\
& \text { غيراولند؛ يس d = } \mathrm{m} \text { قبول میشود. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { كه در حل تست فقط يكى را مضرب VY } 4 \text { قرار دهيه، كافى است. } \\
& 9 \mathrm{~V} \quad 9 \mathrm{~V} \quad 9 \mathrm{~V} \\
& q n+r=9 \vee q \Rightarrow 9 n+r \equiv 0 \Rightarrow q n \equiv-r \Rightarrow q n \equiv-9 q \xrightarrow{\div r} r n \equiv-r r \\
& \Rightarrow \stackrel{q v}{n} \equiv-q_{0} \xrightarrow{\circ r} \stackrel{q v}{n} \equiv-r \circ \Rightarrow n=9 v q-r \circ \\
& 1 \leq q \mathrm{Vq}-r_{0}<r_{0} \Rightarrow+r \leq \leq \mathrm{Vq}<r r_{0} \Rightarrow 0 / r \leq q<r / q \Rightarrow q=1, r, r, r
\end{aligned}
$$

اكر عدد صحيح a را بر عدد طبيعى b تقسيم كنيهم، اعداد صحيح منحصربهفرد r و q به دست مى آيد باقى \uparrow بانـه مقومعليه به طورى كه:
$\underset{\downarrow}{\mathrm{a}}=\underset{\downarrow}{\mathrm{b}} \mathrm{q}+\mathrm{r} \quad \circ \leq \mathrm{r}<\mathrm{b}$
خارجقسمت مقسوم

$8 \quad V r=\|(\underset{\downarrow}{(\underset{y}{*})+V}$
$8-90=9(\underset{\downarrow}{-v})+r$
خارجقست
خارقسمت
$q=\left[\frac{\mathrm{a}}{\mathrm{b}}\right] \quad$ تدكرمبمم در تقسيم a بر b، خارج قسمت از فرمول مقابل به دست میآيد كه البته بعد از يافتن q، به دست آوردن باقىمانده همم راحت خواهد بود.

$\begin{array}{lrl}19!-11(\% & 19!+1(\% & 19!-1(Y \\ \mathrm{q}=\left[\frac{\mathrm{V}!-\Delta}{\mathrm{V}}\right]=\left[19!-\frac{\Delta}{1 \mathrm{~V}}\right]=19!-1 & \text { 19!() }\end{array}$
(-اففرازمجموعدٔZ
 fk, fk +

د
 راستى مىیدانيد كه وقتى باقىمانده از نصف مقسومعليه بزر كَتر باشد به فرم ديكُرى نيز مانتد نمونههاى $8 f k+r=f k+f-1=f(k+1)-1=f k^{\prime}-1$

روبهرو مىنويسند؟ $1 r k+V=1 r k+1 r-\Delta=1 r(k+1)-\Delta=1 r k^{\prime}-\Delta$
 $\varphi \mathrm{k}, \varsigma \mathrm{k}+1, \varphi \mathrm{k}+r, \varphi \mathrm{k}+r, \varphi \mathrm{k}+r, \varphi \mathrm{k}+\Delta$ $\varepsilon \mathrm{k}, \varsigma \mathrm{k} \pm 1, \varsigma \mathrm{k} \pm \mathrm{r}, \varsigma \mathrm{k}+r$

كه معمولاً بهه فرم مقابل نمايش مىدهند:

$$
a^{r}=v k+r\left(r \quad a^{r}=v k+r\left(r \quad a^{r}=v k+r\left(r \quad a^{r}=v k+1\right)\right.\right.
$$

|l| وقتى الكُوريتم تقسيهم را به توان مىرسانيه، اين اجازه , اا داريم كه فقط باقىماندهاش را به آن توان برسانيه. $a=v k, v k \pm 1, v k \pm r, v k \pm r \rightarrow a^{r}=v q, v q+1, v q+r, \underbrace{v q+q}_{v q^{\prime}+r}$ يعنى باقىماندة
|Z
ΔF (F
$r \circ(r$
Y ($(\zeta$
if (1)

ت

$$
\left\{\begin{array}{l}
\mathrm{a}=\mathrm{vk}, \mathrm{vk}_{\downarrow} \pm \mathrm{I}, \mathrm{vk} \pm \mathrm{r}, \mathrm{vk}_{\downarrow} \pm \mathrm{r} \\
\mathrm{a}^{r}=\mathrm{vq}, \mathrm{vq}+\mathrm{I}, \mathrm{vq}+\mathrm{r}, \underbrace{\mathrm{vq}+\mathrm{q}}_{\mathrm{vq}^{\prime}-r}
\end{array}\right.
$$

$1 \leq \gamma k+r \leq 100 \Rightarrow k$ k $=1 f$ $\xrightarrow{+}$ عدد وجود دارد. YA $1 \leq \gamma k-r \leq 100 \Rightarrow k$ ت \quad ت $=1 f$

$$
\text { VLr(r } \quad \text { V (r r } \quad \text { r (}
$$

افراز كرده و عمل تقسيه را در تمام حالات بررسى مىىكيم.

$$
a=1 \circ q+v \Rightarrow a-r=1 \circ q+r
$$

جون مى خواهيم طرفين را بر Y تقسيم كنيم، Q , ا افراز مى كنيم:
(حالت اول $q=r k \Rightarrow a-r=1 \cdot(r k)+r \Rightarrow \frac{a-r}{r}=1 \cdot k+r$
(حالت دوم $q=r k+1 \Rightarrow a-r=1 \circ(r k+1)+r \Rightarrow \frac{a-r}{r}=1 \cdot k+v$
r-كاريردقضيهٔتقسيم
الف) تستهايعى كه باقىمانده، مورد سؤال قرار مى گيرد.
اين مدل از تستها بيشتر در قسمت همنهشتتى مطرح مى شود. در اينجا به سادهترين آنها مى يردازيم.
 $9(Y \quad \Delta(r) \quad r(r) \quad V()$ (1)
 $a=q \underbrace{\left(q^{\prime}+r\right)}_{q^{\prime \prime}}+v \Rightarrow a=q q+v$
 مى تواند داشته باشد؟

$\Rightarrow r=r k \Rightarrow$ بايد مضربr باشد. r $\mathrm{r} \neq 1$ يعنى \Rightarrow تعداد $=\left[\frac{99 q}{r}\right]-\left[\frac{9 q}{r}\right]=r \ldots$

ب) تستهايى كه قسمت b.q، يعنى مقسومعليه يا خارج قسمت مورد سؤال قرار مى كيرد.
[?| در يكى تقسيم اگر هז واحد به مقسوم اضافه كنيم، از باقىمانده به اندازء كم مىشود و يكـ واحد به خارج قسمت اضافه مىگردد. مجموع ارقام مقسومعليه كدام است؟ F (F r r r r ()
$\left\{\begin{array}{l}a=b q+r \quad \circ \leq r<b \\ a+r \Delta=b(q+1)+r-\frac{r}{r} b\end{array} \Rightarrow b q+\gamma+r \Delta=b q+b+\not \subset-\frac{r}{r} b\right.$ $\Rightarrow r a=\frac{1}{f} \mathrm{~b} \Rightarrow \mathrm{~b}=100 \Rightarrow$ جمع ارقام $=1$
? اكر عدد 909 را بر عدد طبيعى b تقسيم كنيه، خارج قسمت برابر و و باقىمانده مخالف صفر است. براى b جند حالت وجود دارد؟

10 (f If if irtr If ()
$90 \circ=b(9)+r \quad \circ<r<b$

$\Rightarrow \Lambda \Delta / \vee<b<100 \Rightarrow b=\{\wedge 9, \wedge \vee, \ldots, 99\} \Rightarrow$ تعداد $=1 f$
 واحد از مقسومعليه كم شود، ه واحد به خارج قسمت اضافه شده و باقىمانده صفر مىشود. مقادير q كدام است؟
 مىتوان يافت؟

1 (1)
 حداكثر خارج قسمت كدام است؟

9 (F)
$\wedge r$

$$
V(Y
$$

4 (1)

$$
\begin{aligned}
& b+\Delta 00 \quad \Delta 0 \quad \Delta 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Fif } \\
& r(r \\
& \text { r } r \\
& 19 \mathrm{~b}=\mathrm{br}^{r}+\mathrm{r} \quad \circ \leq \mathrm{r}<\mathrm{b} \Rightarrow 19 \mathrm{~b}=\mathrm{r}(\mathrm{br}+1) \\
& \mathrm{b}=19 F \quad \mathrm{~b}=11 \quad \mathrm{~b}=\frac{r T}{\Delta} \quad \mathrm{~b}=\frac{1 f}{11} \\
& \text { F(F rerr rir } \\
& \text { - }
\end{aligned}
$$

$$
\begin{aligned}
& \text { A, 10 (f } \\
& \left\{\begin{array}{l}
a=b q+q \quad 0 \leq q<b \\
a=(b-r)(q+\Delta)+0
\end{array} \Rightarrow b q+q=(b-r)(q+\Delta)\right. \\
& \Rightarrow b q+q=b q+\Delta b-r q-1 \Delta \Rightarrow f q=\Delta b-1 \Delta=\Delta(b-r)=\Delta k
\end{aligned}
$$

ب) تستهايیى كه مقسوم مورد سؤال قرار مىگيرد.
واحد كمتر است؟

$$
\begin{aligned}
& \text { دقق كنيد كه q بايد مضرب r باشد؛ زيرا در غير اين صورت عبارت } \\
& \text { q كه اين با مفهوم الكوريتم تقسيمه تناقض دارد؛ چس: }
\end{aligned}
$$

يرسشهاى چهاركزينيهاى

「 اضافه كرد، بدون آنكه خارج قسمت و مقسوم تغيير كنند؟
$r(f$
$9(\%$
$1 \cdot(Y$
r()

19FF مقدار ممكن براى a كدام است؟

$$
\begin{aligned}
& \text { IY (F } \quad \text { IN (r } \\
& \text { ir (r } \\
& 19 \text { () }
\end{aligned}
$$

 مقسوم كدام است؟

$$
\text { AFY (F } \quad \text { OTA (Y } \quad \text { DIT (Y } \quad \text { D०F (}
$$

199- در يكـ تقسيم، اكر F0 واحد به مقسوم و 「 واحد به مقسومعليه اضافه شود، خارج قسمت تغيير نمى كند و از باقىمانده f واحد كم مىشوه. خارج قسمت كدام است؟ YF (F YY (Y YQ Y Y ()

19V ا- اتر در يك تقسيم، مقسوم VFA و باقىمانده lo او مقسومعليه سه برابر مربع خارج قسمت باشد، خارج قسمت كدام است؟

$$
\text { If (Y } \quad \text { IY (r } \quad V(Y \quad \text { \& }
$$

19^ - عدد صحيح n مكعب كامل است. كدام معادله در مجموعdٔ اعداد صحيح جواب ندارن؟

$$
\begin{array}{rr}
\mathrm{n}=\mathrm{vk}+1(\mathrm{r} & \mathrm{n}=\mathrm{vk}() \\
\mathrm{n}=\mathrm{vk}+\varphi(\mathrm{Y} & \mathrm{n}=\mathrm{vk}+\omega(\mathrm{r}
\end{array}
$$

199- چند عدد طبيعى b وجود دارد به طورى كه در تقسيم bll بر باقيمانده برابر V باشد؟

$$
Y(F \quad G(r \quad \forall(Y \quad \Delta()
$$

IV. مىشود و با كمكردن مقدار y از مقسوم، باقىمانده برابر صفر و خارج قسمت يكى واحد كم مى بشود. اكر

Δ (${ }^{\text {F }}$	$F_{\text {cr }}$	r (r	$r(1$
(IVI			
If (f)	Ir ${ }^{\text {r }}$	Ir (Y	11 (1)

IVY- مجموع دوازده عدد صحيح و مثبت برابر IVY است. حداكثر چند عدد بيشتر از IX است؟
1 (\uparrow
$9(\%$
$1 \circ(Y$
rIVr به ازاى جند عدد متعلق به مجموعهٔ 9 ($\mathrm{F} \quad \mathrm{A}(\mathrm{r} \quad \mathrm{Y}(\mathrm{Y}$
 بخش هذير است؟

چاستخنامةٔتشرصحى

(1) $r|\Delta a-r b \xrightarrow{x r} r| 1 \circ a-\lambda b$
(1) $\underset{\text { (1) } r \mid \Delta a-r b}{r \mid \& b}+r|\Delta a \Rightarrow r / a \rightarrow r| a^{r}$
(1) $\left.\begin{aligned} & a\left|b^{r} \xrightarrow{r} \xrightarrow{r} a^{r}\right| c^{r} \xrightarrow{\times b} a^{r}\left|b^{\gamma}\right| b c^{r}\end{aligned} \Rightarrow a^{r} \right\rvert\, b^{r}$

$\left\{\begin{array}{l}|r| i r b+\Delta k-I V \\ I r \mid i r b\end{array} \longrightarrow|r| \Delta k-I V \Rightarrow \Delta k-I V=I r \Rightarrow k=9\right.$
 $r\left|n^{r} \Rightarrow r^{r} \times r\right| n^{r} \Rightarrow r^{r} \times r|n \Rightarrow r| n$
*
$r \Delta\left|n^{r} \Rightarrow r^{r} \times \Delta\right| n^{r} \Rightarrow r \times \Delta|n \Rightarrow 1 \Delta| n$

$n_{\text {min }}=9 \circ \Rightarrow$ مجموع ارقام $=9$
عدد هواست؛ پس:
$\left.y=\frac{r x^{r}-r x+r}{r x+1} \in \mathbb{N} \Rightarrow r x+1 \right\rvert\, r x^{r}-r x+r$

$\left\{\left.\begin{array}{l}r x+1 \mid r x^{r}-r x+r \\ r x+1|r x+1 \xrightarrow{x x} r x+1| r x^{r}+x\end{array} \quad r x+1 \right\rvert\, r x-r\right.$
$\left\{\left.\begin{array}{l}r x+1 \mid r x-r \\ r x+1|r x+1 \xrightarrow{r x} r r x+1| r x+r\end{array} \longrightarrow r x+1 \right\rvert\, \omega\right.$
$\Rightarrow r x+1= \pm 1) \pm \Delta$
y تنها عدد طبيعى است كه صدق مى كند. حال آن را در معادلأ منحنى قرار مىدهيم تا X =

$$
y=\frac{r\left(r^{r}\right)-r(r)+r}{r(r)+1}=1
$$

آن را در سمت راست گذاشته و در آخر فقط صورت كسر حاصل را در نظر بكيريم:
$\left.\underset{=0}{r x+1}\left|r x^{r}-r x+r \Rightarrow r x+1\right| r\left(-\frac{1}{r}\right)^{r}-r\left(-\frac{1}{r}\right)+r \Rightarrow r x+1 \right\rvert\, \Delta$
$x=-\frac{1}{r}$
در نتيجه XX+1 =

جواب درست و گاهی جواب غلط به دست مى آيد.

$$
\begin{aligned}
& \left.r x+r|\Delta x-1 \Rightarrow r x+r|-\frac{v}{r} \Rightarrow r x+r \right\rvert\, v \Rightarrow r x+r= \pm 1 \leq \pm v \\
& \stackrel{\rightharpoonup}{\downarrow}=-\frac{r}{r}=-\frac{1}{r}
\end{aligned}
$$

در اين روش X أى به دست نمى آيد، در صورتى كه با روش اصلى X X X به دست مى آيد. $\overline{a b}=r a \cdot b \Rightarrow 1 \circ a+b=r a b \Rightarrow 1 \circ a=b(r a-1)$
$\left.\mathrm{b}=\frac{1 \circ \mathrm{a}}{r \mathrm{a}-1} \in \mathbb{N} \Rightarrow r \mathrm{a}-1 \right\rvert\, 1 \circ \mathrm{a}$
$\left\{\left.\begin{array}{l}\mathrm{ra}-1 \mid 1 \circ \mathrm{a} \\ \mathrm{ra}-1|\mathrm{ra}-1 \xrightarrow{\times \Delta} \mathrm{ra}-1| 1 \circ \mathrm{a}-\mathrm{\Delta}\end{array} \xrightarrow{-} \mathrm{ra}-1 \right\rvert\, \Delta\right.$
$\Rightarrow \mathrm{ra}-1= \pm 1, \pm \Delta$
$a=1,{ }^{\circ}, r,-1$
 $a=r, b=9$
$\lambda r\left|r^{n}+1 \Rightarrow r^{\psi}+1\right| r^{n}+1 \Rightarrow \frac{n}{f}=r t+1 \Rightarrow n=\lambda t+r \quad$ arn $n=1 \Delta r$ $1 r a\left|\Delta^{n}-1 \Rightarrow \Delta^{r}+1\right| \Delta^{n}-1 \Rightarrow \frac{\mathrm{n}}{r}=r \mathrm{k} \Rightarrow \mathrm{n}=9 \mathrm{k}$
$r\left\{\begin{array}{l}n=\lambda t+r \\ n=s k\end{array} \Rightarrow\left\{\begin{array}{l}r n=r f t+I r \\ r n=r f k\end{array} \longrightarrow n=r f q-I r \Rightarrow n=I r, r \varphi, q \cdot, \Delta f\right.\right.$

aTD

$\left\{\begin{array}{l}r x+r|r x-\Delta \xrightarrow{x} r x+r| 9 x-10 \\ r x+r|r x+r \xrightarrow[x]{x} r x+r| 9 x+9\end{array} \quad r x+r|19 \Rightarrow x+1| \wedge\right.$
$\Rightarrow x+1=r, r, \lambda \Rightarrow x=1, r, r$

$x=1 \Rightarrow f \mid-r \quad x$
قبول است. $\mathrm{x}=\mathrm{y}$
$x=r \Rightarrow \lambda \mid f x$
$\mathrm{X}=\mathrm{V} \Rightarrow 19 \mid 19 \quad \checkmark$

 $(\wedge r a, \lambda f b)=(i r \times r \mid q, \wedge f b)=(\underline{\underline{\Lambda f}} \times r q, \underline{\underline{\Lambda f b}})=\lambda f t$

يعنى حاصل ب.م.م مضرب AF است و تنها كزينهاي كه مضرب AF است، (1) است. $(a, v)=v \Rightarrow$.مضرب $a \Rightarrow a=v t$ $(\Delta a, b)=\Delta \Rightarrow$.مضرب $b \Rightarrow b=\Delta t^{\prime}$ (1) و (1) قطعاً نادرست هستند.
(1) $[\mathrm{ab}, 1 \circ \Delta]=\left[v t \times \Delta \mathrm{t}^{\prime}, \mid \circ \Delta\right]=\left[r \Delta t t^{\prime}, \mid \circ \Delta\right]=1 \circ \Delta$
($(\mathrm{ab}, r \Delta)=\left(v \mathrm{t} \times \Delta \mathrm{t}^{\prime}, r \Delta\right)=\left(r \Delta \mathrm{tt}^{\prime}, r \Delta\right)=r \Delta$

109- تزينة س1ه
$[\mathrm{a},(\mathrm{b}, \mathrm{a})]=|\mathrm{a}|$
$(\mathrm{a},[\mathrm{b}, \mathrm{a}])=|\mathrm{a}|$

$$
\left.\begin{aligned}
& {[a,(a, a)]=r \Rightarrow|a|=r} \\
& (b,[b, v])=r \Rightarrow|b|=r
\end{aligned} \Rightarrow\left[a^{r}, b^{r}\right]=\left[(\pm r)^{r},(\pm r)^{r}\right]=r^{r} \times r^{r}=r \right\rvert\, 9
$$

$(9 n+\Delta, n+f)=d \Rightarrow\left\{\begin{array}{l}d \mid 9 n+\Delta \\ d|n+f \xrightarrow{\times q} d| q n+r q\end{array} \xrightarrow{-} d|r|\right.$
19-19-

 $n+f=r \backslash t \Rightarrow n=r ı t-f \Rightarrow n=\{r v, \Delta \wedge, \wedge q\}$

قرار دهيم، كافى است.

191- كزينهٔ
$(r a+r b, \Delta a+v b)=d \Rightarrow\left\{\begin{array}{l}d\left|r a+r b \xrightarrow{x_{\Delta}} d\right||\Delta a+r \circ b \xrightarrow{-} d| b \\ d|\Delta a+\gamma b \xrightarrow{x r} d| \Delta a+r \mid b\end{array}\right.$
 $\mathrm{d}\left|\Delta \mathrm{a}+\mathrm{vb} \xrightarrow{\mathrm{xf}^{\dagger}} \mathrm{d}\right| r \circ \mathrm{a}+\mathrm{r} \wedge \mathrm{b}$

حال d

فراموش نكنيد كه d نبايد از (a,b) كوحّىتر باشد (d خود (a,b) يا مضارب (a,b) است).

$\left.(a, b)=r \Rightarrow(r a+r b, \Delta a+v b)=d^{\prime} \Rightarrow d^{\prime}\left|\begin{array}{ll}r & r \\ \Delta & v\end{array}\right| \times r \Rightarrow d^{\prime} \right\rvert\, r \Rightarrow d=r$
 $\left\{\begin{array}{l}a=r k \\ a \neq r t \Rightarrow a=r t+1\end{array} \Rightarrow\left\{\begin{array}{l}r=r k \\ a=r t+1\end{array} \Rightarrow\left\{\begin{array}{l}r a=s k \\ r a=\varphi t+r\end{array} \longrightarrow a=\varphi q+r\right.\right.\right.$ $1 \leq 9 q+r \leq 100 \Rightarrow-r \leq 9 q \leq q V \Rightarrow-\frac{1}{r} \leq q \leq 19 / r$

پی qu
$\left\{\begin{array}{l}a=b(v)+i v \quad i v<b \\ a=(b+x)(v)+r\end{array} \Rightarrow v b+i v=(b+x) v+r\right.$ (19
$V b+I V=V b+V x+r \Rightarrow I V=V x+r \Rightarrow r=I V-V x$

$a=1 v q+\frac{1}{10} q \quad 0 \leq \frac{1}{10} q<i v$
19F
فقَط بايد دقت كتيم كه q مضرب ه 1 باشد؛ هحرا كه اكُر نباشد، باقىمانده عددى غيرصحيح خواهد
 $\circ \leq \frac{1}{10} \mathrm{q}<i \mathrm{~V} \xrightarrow{x / 0} 0 \leq \mathrm{q}<1 \gamma_{0} \Rightarrow \mathrm{q}_{\max }=19_{0}$
$\Rightarrow a_{\max }=1 v(190)+\frac{1}{10}(190) \Rightarrow a_{\text {max }}=r Y \% \varphi \Rightarrow$ جمع $=11$
$\mathrm{a}=\mathrm{bq}+\mathrm{r} \quad \circ \leq \mathrm{r}<\mathrm{b} \Rightarrow \mathrm{rfr}=(\mathrm{r}+1) \mathrm{q}+\mathrm{r}$
19

 $r \mu r=(r+1) \cdot q$

حال دوتا عدد بيابيد كه ضرب آنها Y Y شود كه قطعاً يكى از حالات زير خواهد شد: | $r+1$ | $r r$ | $r r r$ | 1 |
| :---: | :---: | :---: | :---: |
| q | r | 1 | $r r r$ |
| | \downarrow | \downarrow | \downarrow |
| | $r=r r$ | $r r r=1$ | $r=0$ |
| | | \mathbf{x} | $q=0$ |
| | | | \mathbf{x} |

\Rightarrow HFr $=$ HF \times HY $=$ OHA

$\mathrm{VFA}=\left(\mathrm{rq}^{r}\right) \cdot \mathrm{q}+100 \quad 100<\mathrm{rq}^{r}$

$q \uparrow A=r q^{r} \Rightarrow q^{r}=r 19 \Rightarrow q=9$
19^- كزينٔ ه"

n = Vq, vq+1, vq+9 يكابراين

$$
\| I I=b q+v \quad v \leq b \Rightarrow 1 \circ f=b q \quad v \leq b
$$

b	lof	ar	re	ir
q	1	r	f	1

$$
\left\{\begin{array}{l}
a=b q+r \quad \circ \leq r<b \\
a+x=b(q+1)
\end{array} \Rightarrow b q+r+x=b q+b \Rightarrow x=b-r\right.
$$

$\left\{\begin{array}{l}a=b q+r \quad \circ \leq r<b \\ a-y=b(q-1)\end{array} \Rightarrow b q+r-y=b q-b \Rightarrow y=b+r\right.$
$\frac{\mathrm{y}}{\mathrm{x}}=\frac{r}{r} \Rightarrow \frac{\mathrm{~b}+\mathrm{r}}{\mathrm{b}-\mathrm{r}}=\frac{r}{r} \quad r \mathrm{~b}+\mathrm{rr}=r \mathrm{~b}-r \mathrm{r} \Rightarrow \mathrm{b}=\Delta \mathrm{r}$
$\mathrm{a}=\mathrm{b} \cdot \mathrm{b}+\mathrm{b}-1 \Rightarrow \mathrm{a}=\mathrm{b}^{r}+\mathrm{b}-1 \Rightarrow 1 \Delta \Delta=\mathrm{b}^{r}+\mathrm{b}-1$
|IV|
$\mathrm{b}(\mathrm{b}+1)=109 \Rightarrow \mathrm{~b}=1 \mathrm{I} \Rightarrow \mathrm{C} \Rightarrow \mathrm{C}=\mathrm{b}-\mathrm{l}=11$
 $1 V r=19(9)+r$

نفرات حداقل 9 ا اتا مداد برسد.
 توزيع مىكنيم كه نشدنى است؛ زيرا دست يكى از اين 「 نفر خالى مىماند و ما اين را نمى خواهيهم. $|V r=19(1)+Y|$ چس الكوريتم را ناحֶاراً به فرم مقابل تغيير مىدهییم:
 خالى نماند؛ در نتيجه حداكثر ^ نفر بيشتر از ^ اتا مداد خواهند داشت. $\mathrm{a}=9 \mathrm{k}, 9 \mathrm{k} \pm 1,9 \mathrm{k} \pm \mathrm{r}, 9 \mathrm{k}+r$
 $\downarrow \quad \downarrow \quad \downarrow \quad \downarrow$
$\mathrm{a}^{r}=9 \mathrm{q}, 9 \mathrm{q}+1,9 \mathrm{q}+\mathrm{f}, 9 \mathrm{q}+\rho$

$1 \leq \varphi k+r \leq \Delta \circ \Rightarrow-r \leq \varphi k \leq r V \Rightarrow-\frac{1}{r} \leq k<V / \wedge$
كه

تنذكرمعمهم مربع هر عدد فرد به صورت 1 (1 نوشته مىشود.
$A=\left(\mathrm{a}^{r}+r\right)\left(\mathrm{a}^{r}+\gamma\right)=(\lambda t+1+r)(\lambda t+1+\gamma)=(\lambda t+r)(\lambda t+\lambda)=r r(r t+1)(t+1)$
همواره بر r r بخششيذير است.
A = ($1+r)(1+V)=r r \quad: a=1$ =

